
Surface tension in Potts models and percolation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 2259

(http://iopscience.iop.org/0305-4470/18/12/024)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 08:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 18 (1985) 2259-2269. Printed in Great Britain 
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Edinburgh EH9 3JZ, UK 
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Abstract. The Kasteleyn-Fortuin relation is used to give a simple proof for the s-state 
Potts model of the relation put = 1 between the correlation length in a particular direction 
on a planar lattice and the surface tension of an interface with corresponding orientation 
on the dual, thus generalising a well known result for the Ising model. The relation is also 
used to give an interpretation of the surface tension in the percolation problem in general 
dimensions. 

1. Introduction 

The representation of the Potts model partition function due to Kasteleyn and Fortuin 
(1969) and Fortuin and Kasteleyn (1972) has been used to extend the model to general 
values of s, the number of states in the original model. Of particular importance has 
been the correspondence between the limit s +  1 and the bond percolation problem 
(see, e.g., Lubensky 1979). The Kasteleyn-Fortuin representation has also been used, 
in conjunction with simple results from graph theory, to derive duality relations 
connecting the partition function at high temperatures on a planar lattice with the 
low-temperature partition function on the dual lattice (Wu 1978, 1982). In this paper, 
it is generalised to treat Potts models on lattices with fixed state boundary conditions, 
in terms of which the surface tension can be defined (see Rottman and Wortis (1984) 
for a general discussion). On taking the limit s + 1 in B 3, a physical interpretation of 
surface tension in the bond percolation problem is obtained and used to establish the 
result stated in the abstract for s = 1. The general result is proved in 9 4 and the paper 
is concluded with a discussion in 0 5. The next section comprises definitions and 
general results to be used in subsequent sections. 

2. General theory 

We shall work throughout with the following Potts Hamiltonian and partition function: 
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The state variables ai in (1) take the values 1, 2 ,  . , . , s and the first summation on the 
RHS denotes a sum over nearest-neighbour pairs of lattice sites. The coupling K is 
positive and  the quantity S,,. is unity if a = a', zero otherwise. We discuss the 
applicability of the results of this paper to more general Hamiltonians than (1) in 0 5. 

When the number of lattice sites N is infinite, the model defined by (1) and (2) 
undergoes a phase transition at a finite coupling K,, in zero field H, for dimensionality 
d > 1. The transition may be characterised by the order parameter s(SU,])- 1 where 
( .  . .) denotes the usual thermal average. Explicitly 

lim s ( S , , ~ )  - 1 = 0 K < K ,  
H-O+ 

lim s( SV,]) - 1 > 0 K > K, .  (36) 
H - 0 -  

Substituting (1) into ( 2 ) ,  and rearranging, we may write the Potts partition function 
in the form 

where 
p = 1 - e-sK. 

Next we expand out the factor I&,, (1 - p + p 6 , , )  in (4) and associate each term in 
the expansion with a graph G on the lattice. Each graph is a configuration of occupied 
and unoccupied bonds such that if a,,, is present in the corresponding term the bond 
between i and j is occupied and is otherwise unoccupied. Weight factors p and 1 - p  
are associated with occupied and unoccupied bonds respectively. 

We define X (  G, nb, n,) = number of n b  (bond),  n, (site) clusters of occupied bonds 
per site of the lattice in G (isolated sites count as 0-bond, 1-site clusters). When the 
sum over {a,} is performed in the Potts partition function, each cluster will yield a 
non-vanishing contribution only if all the sites within it carry the same spin label. 
Bearing this in mind we have 

(1 - P ) ~ B - ' B ( ~ )  n [ 1 + (s - 1) exp( - S H ~ , ) ] " ( ~ . ~ , " ~ ) .  ( 5 )  z = s - N  p . + , ( G )  

G n, ,nh 

Here 

NB(G) = C nbNA^(G, nb,  n,) =total  number of occupied bonds in G 
"s."h 

where NB is the total number of nearest-neighbour bonds in the lattice. 
The result (5) is the Fortuin and Kasteleyn (1972) representation of the Potts 

partition function. The simple derivation given above follows that of Lubensky (1979). 
Setting H = O  in ( 5 ) ,  we obtain the result 

(6) = s - N ( S  ' c ' G ) ) G  

where 

(.  . . )G = p ' B ( G ) (  1 - p ) N B - ' B ( G '  

G 

Nc( G) = 1 NA"( G, nb, n,) = total number of clusters in G. 
% , n h  
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Turning now to the order parameter and correlation function, we define the quantities 

A"=( G, a )  = number of clusters in G containing site a. 

A',( G, a, b )  = number of clusters in G containing sites a and b. 
Then 

We remark that (8) is consistent with (3) for K < K ,  only. This is because, when 
K > K,. contributions to ( 6uol) of graphs containing infinite clusters are non-zero. The 
presence of an  infinitesimal positive field in ( 5 )  forces these clusters to be in state 1. 
Thus for an  infinite system in the presence of such a field, (6) holds provided that 
h"=( G) refers to finite clusters only. Similarly (7) will hold provided that dVc( G, a )  
refers to finite clusters only and therefore this quantity can be 1 or 0. Thus the general 
result for an  infinite system in an infinitesimal positive field is 

5 l / s .  

Using (7) and  assuming (3),  it is easily deduced that the relative contribution to (aual)  
and hence to Z from graphs containing infinite clusters which account for a finite 
fraction of the sites is zero for K < K ,  and a finite quantity for K > K,. 

We shall restrict ourselves to K < K ,  and H = 0, and consider the correlation 
function 

Applying the relation 

C a b  = ((s6uol - 1 )(s6uhI - 1 I)/ ( s - 1) .  

c 6,,, = 1 

(9) 

OL 

to the RHS of (9) and using (8),  we obtain 

Because the Potts states at sites a and b are constrained to be different in the numerator 
of the RHS of (1 l ) ,  terms in the corresponding graphical expansion for which a and 
b are members of.the same cluster contribute zero on performing the sum over states. 
Hence 

- s - lN+21 .\.;i G 1 
- z - 1 ( 8 . \ ; ( G , o . b ) , 0 s  )G. 

Substituting (12) into ( l o ) ,  we may write 
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where the graphs e are those for which a and b are connected by a cluster of occupied 
bonds. Taking the limit s + 1 and interpreting p as a bond occupation probability, we 
deduce that 

lim C a b  = probability that sites a and b are connected in the bond percolation problem 
5 -  1 

= Cab( p ) ,  the correlation function for bond percolation. 

Restricting ourselves to two dimensions for the reminder of this section, we consider 
a convex region of an infinite lattice which is divided into two parts by a line of length 
L lattice spacings. We vary L by varying the lattice spacing, keeping the orientation 
of the lattice fixed with respect to the figure, so that the angle 4 between the line and 
some lattice axis remains fixed. For each L, the sites a and b are chosen to be the 
lattice sites inside the region, nearest the two points of intersection of the line with 
the boundary of the region. This procedure is shown in figure 1 for a triangular lattice. 
We define the correlation length 5 in the direction 4 as 

Figure 1. Illustrating the procedure, described in the text, for defining the correlation 
length $1. 

Equation (14) is just the usual definition of the correlation length as the exponential 
decay length of the correlation of distant states. We also define a correlation function 
Chb on the finite portion of the lattice enclosed within the region (shown shaded in 
figure 1). Cbh is given by 

C' ab = ( s . \ ~ c ( ~ ) ) d / ( s ~ ; ' G )  ) G  

where 6, G are now graphs on the finite lattice (cf 13), 

C h b ( p )  = lim Cbb 
S'1 
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is the bond percolation correlation function between the sites a and b on the finite 
lattice. We assume that 

L-a; Iim [ - L - ’  ki(Chb)]=(-’(~#~, s) .  (15)  

Equation (15) is the strongest assumption we shall make in deriving the duality relations 
which are the main object of this paper. Physically, the result is obvious. When L is 
large c a b  is very small. This is because the contribution from graphs containing a 
cluster large enough to connect a and 6 is a very small fraction of the total contribution 
to 2 from all graphs. The bulk of this very small contribution will come from graphs 
where the cluster connecting LI and 6 is not much bigger than it has to be-in other 
words, is very long and thin. The graphs G on the infinite lattice can be divided into 
sets which yield the same graph on the finite lattice. For graphs 6, the typically long 
thin cluster which connects a and 6 on the infinite lattice may wander outside the 
region and therefore possibly be broken on the finite lattice. Thus not all 6 on the 
infinite lattice yield 6 on the finite lattice and C b b  is strictly less than Cah Intuitively 
we expect that, as L+m, Chb will tend to a finite fraction of Cab, or, at worst, some 
inverse power of L times c a b .  In either case, the assumption (15) will be valid. 

3. Surface tension and bond percolation 

Consider the Potts model defined on a d-dimensional infinite lattice and consider a convex 
region of the lattice. Let this region be divided into two parts by a (d-1) -  
dimensional plane where the ‘area’ of intersection with the region is A in units of (lattice 
spacing)‘d-’’ and whose normal is in direction n* with respect to the lattice axes. We vary A 
by changing the lattice spacing, while keeping f i  fixed. The situation is just the 
d-dimensional analogue of figure 1. For a given A we consider the finite lattice of 
complete lattice cells, together with their vertices and bonds, contained in the region. The 
boundary spins can be divided into two sets C, and C2, according to which side of the 
dividing plane they are on. We define 

Thus 2”” is the finite lattice partition function with the boundary spins C,  and C2 
fixed in the states p and v, respectively. We use the following standard definition for 
the surface tension (+ of an interface normal to f i :  

As usual, we assume that the limit on the RHS of (17) is independent of the shape of 
the bounding region. Let us define the following quantities 

NC( G, Ck) = number of clusters in G containing at least one site of the 

Nc( G, C1, C,) = number of clusters in G containing at least one site from 

set C,, where k = 1, 2. 

each of the sets C,  and C,. 
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Then, clearly, 

)G  (18) 

(19) 

.+ c( G)- .*  c( G,C,  ) - A  c (  G,C,) 2" = s - N ( S  VC(G,C,,C2),OS 

2 1  1 = S - N  (s.\.c( G ) - . h C (  G,C,)- .h.c(  G,C,)+.Vc( G,C, ,C,)  ) G. 

Substituting (18) and (19) into (16) and taking the limits s + 1, we obtain the result 

U (  nl, 1) = lim [ -A-'P-'  In{ Q ( A ,  p ) } ]  (20) 
A-CC 

where 

Q(A,  p )  = (8~+,(G,C,,C,),0)G. (21) 

In the language of the bond percolation problem, the quantity on the RHS of (21) is 
the probability that there is no cluster of occupied bonds connecting the set of boundary 
spins C, to the set of boundary spins C,. Let us now specialise to two dimensions 
and consider an infinite planar lattice and its dual. We consider a convex region, 
divided into two parts by a line of length L, and the finite portion of 2' of the original 
lattice contained within it as we did in the introduction. 2' will contain sites a and b 
selected by the procedure described in the introduction. We now consider a finite 
portion 2'* of the dual lattice which consists of all bonds which cross bonds of 2' and 
the vertices attached to these bonds. The 2'* corresponding to the 2' of figure l (a )  
is shown in figure 2 .  We note that 2'* is not the dual of 2'. The boundary spins are 
divided into two sets C, and C, by the continuation of the line. Denoting the Potts 
model partition function on Y* with coupling K *  by Z,(K*),  the surface tension of 
an interface at angle 4 for a Potts model with coupling K *  on a lattice dual to the 
original infinite planar lattice is given by 

u*(c$, s)  = L-00 lim L-'[-(P*)- '  In ZY(K*)+(P*)- ' ln  Z y ( K * ) ] .  (22) 

a 

Figure 2. The lattice 9* corresponding to the lattice Y of figure l ( a )  (shown dotted). 

With each graph G on 2' may be associated a unique graph G* on 2'* such that each 
occupied bond of G crosses an unoccupied bond of G* and vice versa. It is easy to 
see that G* for which C, and C2 are connected correspond to G for which a and b 
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are not connected and vice versa. Then 
- 

81+c(G*,CI.C~).0 - 1 - S . V c ( G , a , b ) , O .  

Further, since 

h " B (  G*) = NB-A"B( G)  

we deduce that 

(S-Lc(G*,C,C2).0)G* = (1 - 8.Y,(G,a,b),0)G (23) 

p *  = 1 -p. (24) 

provided that we make the identification 

The quantity On the RHS of (23) is the bond percolation correlation function Cbb(p). 
Using (20), (21) and assuming (15), we obtain the result that 

P * g * ( + ,  1)5(+,1) = 1. ( 2 5 )  

Equation ( 2 5 ) ,  in conjuction with (24), is a special case of a corresponding result for 
general s that we shall prove in the next section. 

4. Proof of the duality relation for general s 

The method of attack we shall use to generalise (24) and (25) will be to establish a 
relation between the partition function on Y*,  in terms of which the surface tension 
is defined, and that on Y'l), the lattice dual to 2, so that standard duality arguments 
can be used. Y'" is obtained from Y* by coalescing the boundary sites C,  and C, 
into a single site C, usually called the exterior site. We denote the partition function, 
with coupling K * ,  defined on 2") by Z, , , (K*) .  Similarly, it is conveneint to define a 
lattice YC2)  which is derived from Y* by coalescing C,  into a single site C1 and C2 
into a single site C2. If C, is fixed in state p and C2 is fixed in state v we denote the 
partition function on Y'2)  by Z G ( K * ) .  There is a one-to-one correspondence between 
the bonds of any pair of the three lattices Y*, 2") and Ye'" and hence G* describes 
a graph on any of the lattices. For any such graph, the number of internal clusters, 
i.e. clusters containing no sites C,, C2 or C, is independent of the lattice. Denoting 
this quantity by X,(G*), we have 

(26) 

The terms on the RHS of (26) are lattice-dependent. (For 2'" we understand C,  = C2 = C 
on the RHS of (26).) 

Let N*, N'" and N'" denote the number of sites of Y*, 2") and Y(2)  , respectively. 
Then 

(27) 

X,(G)=Nc(G)-uV,(G, Cl)-Nc(G, C2)+Nc(G,  C1, C2). 

N ( ' )  = "2' - 1 = N* - + 1 

where 

n,  = number of boundary sites of Y* 

Applying the general result (19) to the lattice Y* we have 
Z Y ( K * )  = S - N ( S ~ ~ l ( G * ) ) G * .  
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Using (27), ( l o ) ,  and the fact that, on lattice Y"', 

we obtain the result that 

Z Y ( K * ) =  s"cZ,, ,(K*).  (29) 

We note that (29) could have easily been established for s = 2, 3, 4 , .  . . , by starting 
from the original model (1) and (2). The proof given, starting from (6) and (27), holds 
for general s. Furthermore, on noting that NC( G*, C1, C,) is zero on 2"' if and only 
if it is zero on Y*, we use the result (18) to deduce that 

Z Y ( K * )  = s - ' "c - ' 'Z f f , (K*) ,  (30) 

)e* (31) 

We can write 
ztI,( K * )  = s-~v'2'(s.%.,(6*) 

where the 6* are those graphs on YI2) for which there is no cluster of occupied bonds, 
connecting the sites C1 and C2. The lattice L?"), dual to 2, must be constructed so 
that the exterior site lies in the region exterior to X We then see that, on T"', 6* 
are graphs such that the exterior site contains no circuit which crosses the line ab. 
Considering the RHS of (31) on 9") and using (28), we have 

Z,': ,(K*) = s-1Ni1'+2)(s-\;(6') )e*. (32) 

(+ * ( 4, s ) = li m [ - L- ( p * - 1 n{ ( s*+.J '* 1) 6 I / ( s .'.J * )) * )I. 

Substituting (29), (30) and (32) into (22), and using (6) we obtain the following 
expression for the surface tension: 

(33) 

The expression on the RHS of (33) involves graphs and cluster numbers on 9") and 
hence we can apply standard duality arguments. The basic result is (see, e.g., Wu 1982) 

(34) 

L-m 

* AVB-.+-B(G*) .+;(G*) = A [ ~ . * ' ~ ( G ) ( ~  - p ) N B - . + . B ( G )  .Vc(G) ( p * ) w G * ) (  1 - p  ) S s I. 
The relation (53) holds for any graph G* on 9'" and its dual G on 9, where A is a 
constant which depends on p and 9, but not on G, provided that the following holds: 

(35) P* / ( l  - p * )  = s (1  - P ) / P .  

(esK - l ) ( e s K * -  1) = s. 

Equation (35) is usually written in the form 

(36) 

It is easily seen that any graph 6 dual to 6* is a graph in which a and b are connected 
by a cluster of occupied bonds and vice versa. Thus we identify the RHS of (37) as 
the correlation function CLb. Substituting (37) into (33) with this identification and 
assuming ( 1 9 ,  we deduce that 

P*(+*(4, s ) 5 ( 4 ,  s)  = 1 K < K,. (38) 
Equation (38), in conjunction with (36), is the main result of this paper and generalises 
the well known result for s = 2 (Watson 1968). 
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5. Discussion 

Firstly, we shall make a few remarks about the result (38), which, in spite of the 
simplicity of its derivation, does not seem to have appeared previously in the literature. 
Earlier work on surface tension in general spin systems, in which duality arguments 
were used, has been carried out by mathematicians concerned with using it to establish 
a rigorous criterion for the existence of a phase transition in such systems (Fontaine 
and Gruber 1979). The surface tension of an  interface parallel to a lattice axis has 
been calculated for the three-state Potts model on a square lattice by a modified 
solid-on-solid approach (Selke and Pesch 1982). The Potts surface tension also makes 
an appearance in droplet theories on the Potts model (Lubensky and McKane 1981, 
Schmittmann 1982). In particular, if +( V) d V  is the fraction of the system volume 
occupied by droplets (with non-overlapping boundaries) of volume V + V + d V the 
following result holds: 

K * >  K,* 
V - r  

(39) 

where nl is the normal to the surface element d S  and Smi, is the closed surface which 
minimises the R H S  of (39) subject to the constraint that it bounds a region of fixed 
volume V and describes the equilibrium droplet shape. For the special case of the 
square lattice k ing  model an  exact expression for this shape has been obtained using 
(38) in conjunction with the exactly known [( 4)  (Zia and  Avron 1982). No correspond- 
ing exact results are available for other values of s or for other lattices. Let us specialise 
to a general planar lattice and s < 4, so that the system undergoes a continuous phase 
transition. At criticality U* becomes isotropic and  the equilibrium droplet shape tends 
to a circle. Two-scale factor universality (Ferer and Wortis 1972) and duality arguments 
may be applied to show that, at criticality 

t/  [* = K ;/ KO’ .  (40) 

The quantity on the RHS of (40) is the universal amplitude ratio of subcritical to 
supercritical inverse correlation length amplitudes. Using (38) and (40), (39) becomes 
at criticality, 

lim In +( V) = -27~’’*( K l / K i )  v ” 2 / t * .  
v - x  

Bruce (1984) has presented a simple argument that 

lim ~ * a * t * = +  d = 2 , s < 4 .  
K *+( K :  ) *  

Taken in conjunction with (40) and (38), (41) implies the result 

K i / K l =  2. 

Let us now comment on the physical interpretation of the surface tension in the bond 
percolation problem furnished by equations (20) and (21). In particular we shall briefly 
discuss the consequences of adopting (20) and (21) as the dejinition of the surface 
tension in the bond percolation problem, so that it can be considered independent of 
any Potts model construction. The properties that cr(nl, 1) is non-negative and is zero 
in the disordered phase easily follow from this definition, the first of these properties 
simply being a consequence of the fact that Q ( A ,  p ) ,  being a probability, is less than 
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or equal to unity, while the second follows from the expectation that, in the disordered 
phase, where the system contains only finite clusters, Q ( A , p )  will tend to a constant 
as A + W. Furthermore, for p > p c ,  the result (39) for s = 1 can be derived starting from 
(20) and (21), leading to the physical interpretation of (L( V) d V, for s = 1 and large 
V, as the fraction of the system volume occupied by regions, with non-overlapping 
boundaries, of volume V+ V + d V  such that no site in the interior of any region is 
connected to any site outside the region. As V + W  the fraction of such regions 
containing a cluster of n, sites, and vice versa, such that 

lim n,/ V = p p (  p )  (42) 
V-a, 

tends to unity. Here p is the number of lattice sites per unit volume and P ( p )  is the 
percolation probability. This intuitive observation allows us to deduce the result that 

lim In C(n,)/ln (L( V) = 1 (43 1 v-x  

where n, and V are related by (42). C(n, )  is the number of clusters per site of the 
lattice containing n, sites. Using (43) and (42) in (39) with s = 1, we can derive an 
expression for the large n, behaviour of In C (  n,). The result is the same as that obtained 
by using the relation between C ( n , )  and the formal one-state limit of the s-state Potts 
model free energy in a field, and considering droplet solutions of the latter (Harris 
and Lubensky unpublished, Lubensky and McKane 1981). The fact that we can derive 
this result starting from (20) and (21) and using simple arguments entirely in the 
language of the bond percolation problem suggests that this approach may also be 
useful in obtaining a physical picture of other features of the Potts model droplet 
theory applied to percolation. Before moving on to discuss generalisations of (38), 
we remark that a surface tension has been defined for the site percolation problem by 
exploiting the analogy between cluster perimeters and surface energy in the Ising model 
(Franke 1982a, b). 

It would be interesting to investigate the connections between a surface tension 
defined in this way and using the present boundary condition approach, bearing in 
mind the correspondence between site percolation and the s + 1 limit of a Potts model 
with multisite interactions (Giri et a1 1977). 

Lastly, we consider generalisations of (38). We need not restrict ourselves to 
nearest-neighbour interactions in (1) provided that bonds between sites where interac- 
tions are present form a planar graph. Furthermore, the result generalises to bond- 
dependent interactions K,, > 0, since the argument of § 4 is the same up to equation 
(33) while (34) and (35) are replaced by the corresponding ‘local’ duality relations 
(for a discussion see Wu 1978). 

In conclusion, we have given a simple derivation, under rather weak assumptions, 
of a duality relation involving the Potts model surface tension on a planar lattice and 
the correlation function on the dual. We have also provided a consistent physical 
interpretation of surface tension in the bond percolation problem. 
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